Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A growing interest in AI and deep learning applications necessitates the development of efficient power delivery networks (PDNs) to manage broadband impedance in high-speed switching environments. This paper evaluates the electromagnetic performance of horizontal, vertical, and embedded PDNs in fanout packages, with particular emphasis on vertical and embedded configurations, both less explored for noise mitigation. Simulations indicate that embedded PDNs significantly reduce commonmode (CM) and differential-mode (DM) radiation, achieving levels between 20-78 dBµV. Additionally, measurements show that embedded PDNs maintain a lower electric field strength of 1.9 V/m for DM radiation as compared to 2.7 V/m for horizontal PDNs and 11.4 V/m for vertical PDNs. Advanced shielding with 5-µm thick Cu-CoNiFe layers further reduces magnetic field emissions by 30-45 dB. These findings demonstrate that embedded PDNs are a more effective solution for electromagnetic interference (EMI) mitigation in future electronic systems, offering superior noise control and reduced crosstalk.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Foundations for advancing wireless networks rely on the exploration of high-frequency bands ranging from 30 GHz to 300 GHz. FutureG technologies enable access to these bands with improved spectral efficiency and bandwidth. However, these trends also present significant challenges for future electronic systems. These are associated with design for higher gain and bandwidth to address higher pathlosses, interconnect losses between the transceiver and the antenna array, higher power consumption because of hardware complexity, electromagnetic interference (EMI), thermal management for higher power dissipation, limited manufacturability because of the new set of required materials, high functional density in multilayered substrates, and high production costs. Nanopackaging enables key solutions to many of these challenges by bringing advanced packaging and device materials, interfaces and package architectures to manage the complex system requirements for FutureG communications. These include nanoscale low-loss conductors, shielding structures, thermal interfaces and heat-spreaders, reconfigurable systems with tunable components, THz arrays and detectors, metasurfaces and seamless heterogeneous integration. This article reviews the key nanopackaging advances that are making FutureG communications a reality.more » « less
-
Reconfigurable Intelligent Surfaces (RIS) also known as Intelligent Reflecting Surfaces (IRS) often depend upon metasurfaces. These typically comprise of a large array of passive elements that can be fabricated to modulate reflection amplitude or phase or both to create tunable functions that are independently controlled. Various RIS are developed to improve spectral efficiency through ultrawideband antennas, enhanced beamforming with higher gain and bandwidth, spatial reconfigurability, selective and adjustable isolation, and other desired features. Several approaches to tune the RIS performance are being explored. This paper reviews the primary approaches and the benefit of emerging tunable nanomaterials in achieving such RIS functions. Designs with 1-bit and 6-bit phase shifters are discussed in the first part. Various opportunities with nanomaterials and nanodevices to induce such phase shifts are discussed in the last part of the paper.more » « less
An official website of the United States government
